Sustainability Performance of Construction Materials and Building Products made from Secondary Materials

Prof. Dr.-Ing. Holger Wallbaum

holger.wallbaum@chalmers.se

April 01, 2016
Resource flows in urbanised areas

<table>
<thead>
<tr>
<th>Energy related resources</th>
<th>Material related resources</th>
<th>Water, Land</th>
<th>Ecosystems</th>
<th>Human health</th>
<th>Resources</th>
</tr>
</thead>
</table>

- Energy related resources
- Material related resources
- Water, Land
- Ecosystems
- Human health
- Resources
Global Material Extraction & GDP

Source: Krausmann et al. 2009
Average Metabolic Rates

Metabolic rates [t/cap/yr]

- Ores and industrial minerals
- Fossil fuels
- Construction minerals
- Biomass

Source: Krausmann et al. 2008
Our «ecological rucksack»

Material needed per capita per year

50 tons = 100 %

<table>
<thead>
<tr>
<th>Category</th>
<th>Tons (per capita)</th>
</tr>
</thead>
<tbody>
<tr>
<td>others</td>
<td>11</td>
</tr>
<tr>
<td>community</td>
<td>6</td>
</tr>
<tr>
<td>leisure</td>
<td>13</td>
</tr>
<tr>
<td>education</td>
<td>5</td>
</tr>
<tr>
<td>health</td>
<td>9</td>
</tr>
<tr>
<td>clothing</td>
<td>6</td>
</tr>
<tr>
<td>food</td>
<td>20</td>
</tr>
<tr>
<td>residence</td>
<td>29</td>
</tr>
</tbody>
</table>

The hidden material “rucksack”

- erosion
- earth displacement
- unconverted materials

The visible material load

- mineral raw materials
- fossil fuels
- biological raw materials

Our «ecological rucksack»
Construction and Demolition Waste in Europe

- Construction and demolition waste (CDW) is one of the heaviest and most voluminous waste streams generated in the EU.
- CDW accounts for approximately 25% - 30% of all waste generated in the EU and consists of concrete, bricks, gypsum, wood, glass, metals, plastic, solvents, asbestos and excavated soil, many of which can be recycled.
- Despite its potential, the level of recycling and material recovery of CDW varies greatly (between less than 10% and over 90%) across the Union.

EU target to divert 70% of construction and demolition waste from final disposal by 2020
EU Construction Products Regulation

New Basic Requirement No. 7: „Sustainable Use of Natural Resources“

The construction works must be designed, built and demolished in such a way that the use of natural resources is sustainable and ensures the following:

a. recyclability of the construction works, their materials and parts after demolition
b. durability of the construction works
c. use of environmentally compatible raw and secondary material in the
d. construction

→ all product standards have to be revised!
Recycling options of building construction material in Germany

• **Mineral construction waste**
 - Separation technology determines the quality of the recycling potential. Road construction is the most used recovery path > 50%
 - **Bricks** can be mechanically cleaned of plaster and mortar residues.
 - **Broken bricks**: aggregate for mortars, plasters, sand-lime bricks or as a natural bulk and substructure material for road construction. In addition, recycled bricks may be used as a lightweight aggregate in concrete or as an aggregate in tennis sand.

• **Timber**
 - Direct reuse of **untreated waste wood** as beams, formwork material or wooden paving is in principle possible
 - Less than a quarter of the resulting waste wood is recycled for the production of laminated wood mouldings and chipboard
 - The vast majority is incinerated for energy recovery
Recycling options of building construction material in Germany

- **Polyvinyl chloride**
 - For the recycling of PVC windows, doors and roller blinds a nationwide collection and transport system in Germany has been established
 - The *non-existent purity* of PVC composite materials is a problem for recycling

- **Glass**
 - The majority of *waste glass* is melted on as often as desired and used for the manufacture of new glass products
 - Insulating materials made of *glass wool* are made of recycled glass up to a limit of 70% and are melted with other ingredients
 - *Expanded glass granulate* (up to 95% recycled glass) is used as a lightweight aggregate for mineral plasters or lightweight concrete, as well as bulk insulation and sound absorbers
Recycling options of building construction material in Germany

• Metall
 – Structural **steel** nearly closed cycle of materials of 99%. 11% of it can be reused directly. The remaining portion is recycled to high quality new secondary building materials.
 – **Copper** can be recycled any number of times

• Insulating material
 – The majority of **mineral wool** consists of old carcinogenic KMF. Although a higher recycling rate of new KMF is generally possible, currently the majority is landfilled.
 – **EPS**: lack of economic efficiency of existing treatment processes

• Gypsum based materials
 – **Gypsum** can be recycled many times, because the starting material is chemically identical to the hardened end product.
 – The plaster must be sorted, which is hardly the case
Gravel extraction

Land fill

New construction

Deconstruction

Quelle: Amt für Umweltschutz, Kanton Zug
Recycling of construction materials – Life cycle assessment (1/2)

Assumptions for C30/37

• Concrete content for 1 m³ of concrete:

<table>
<thead>
<tr>
<th></th>
<th>C30/37 with natural aggregates</th>
<th>C30/37 with recycled aggregates (25 M.-%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregates</td>
<td>2'000 kg natural aggregates</td>
<td>1'400 kg natural aggregates 460 kg recycled aggregates</td>
</tr>
<tr>
<td>Cement</td>
<td>300 kg CEM II/A</td>
<td>320 kg CEM II/A</td>
</tr>
</tbody>
</table>

• Miscellaneous (examples):
 - No transportation between and treatment and concrete plant
 - 18 km transport distance for the supply of recycled aggregates to the treatment plant
 - Etc.

Recycling of construction materials – Life cycle assessment (2/2)

C 30/37 with natural and recycled aggregates)

► Ambiguous result regarding the usage of recycled concrete aggregates for C 30/37 but different for lean concrete

Worldwide importance of the construction industry

- Jobs: 7%
- GDP: 10%
- Fresh water: 17%
- Energy / CO₂: 30-40%
- Raw materials: 50%
- Land harvesting: 60%
Sustainable development strategies

Resource decoupling refers to when fewer resources are used per unit of economic output, while impact decoupling is when negative impacts on the environment are reduced.

Sustainability assessment of construction technologies

<table>
<thead>
<tr>
<th>Key challenges</th>
<th>Cost per m² (superstructure only)</th>
<th>Requirements building process, Skills</th>
<th>Time Schedule, Prefabrication</th>
<th>Degree</th>
<th>Economy of Scale, Mass Production</th>
<th>Modularization and Flexibility</th>
<th>Durability</th>
<th>Maintenance needs</th>
<th>Recycling Potential, Demolition Ability</th>
<th>Local value creation - labor, material</th>
<th>Interface infrastructure and housing techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scarcity of resources</td>
<td></td>
</tr>
<tr>
<td>Lack of sufficient funds</td>
<td></td>
</tr>
<tr>
<td>Shortage due to urgency of demand</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Shortage of skilled labour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality control</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wastage due to inefficiency</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of added value creation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality and Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples of selected indicator values

<table>
<thead>
<tr>
<th>Initial Construction Costs [USD/m²]</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td><40 USD</td>
<td>10</td>
</tr>
<tr>
<td><60 USD</td>
<td>8</td>
</tr>
<tr>
<td><100 USD</td>
<td>6</td>
</tr>
<tr>
<td><140 USD</td>
<td>4</td>
</tr>
<tr>
<td>>180 USD</td>
<td>2</td>
</tr>
<tr>
<td>N/A</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirements Production</th>
<th>Construction Process</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unskilled Labour with no training or local skills traditionally available, low-tech tools</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Unskilled Labour with short training (< two week) or local skills available</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Unskilled Labour with intensive training (several weeks) or skilled workers</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Advanced skills or Tools required</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Very advanced Skill Level or Tools required</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Information not available</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Sustainability assessment of construction technologies

Average per construction technology category

Steps to obtain Sustainability Criteria from multi-perspective stakeholder data

Summary of Sustainability Assessment Criteria

<table>
<thead>
<tr>
<th>No.</th>
<th>Pillar of Sustainability</th>
<th>Criteria</th>
<th>(1)</th>
<th>(2A)</th>
<th>(2B)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Society</td>
<td>Social Acceptance & Advocacy</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Participation & Identification</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Capacity Building</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Income at local value chain</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Maintenance & Incremental Development</td>
<td>-</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Health & Comfort</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Enduring safety & performance</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Technology</td>
<td>Standardization, Quality Control, Pace of Construction</td>
<td>-</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Continuous Innovation</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Cost advantage of houses</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Scalable business model</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Supply accessibility</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Supply availability & sustainability</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Environmental Impact</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Compliance to policies & regulations</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Modern bamboo-based housing built in Iloilo, Region IV in 2015

Systemic approach on research about building concept

Factors to design a construction material

Shall we choose EPS or stone wool here?

- Environmental impact
- Thermal conductivity
- Compression strength
- Fire resistance
- Water vapor transmission
- Water sorption capacity
- Density
- Thermal mass
- Sound absorption
- Bending strength
- Cost

Sustainable thermal insulation material
Conclusions

• Many set crews to optimise resource flows
 – Recycling economy approach (cradle-to-cradle)
 – Shift from non-renewables to renewables
 – Behaviour (sufficiency)

• Be aware of trade offs and sub-optimisation
 – Horizontally (energy, material resources, carbon emissions, …)
 – Vertically (Construction material, Product/component, Building, …)

• Holistic approaches and system thinking are needed
• Design for Sustainability
Correlation between material density and eco-efficiency - materials in GWP from multiple data sources

New concrete reinforcement technologies

Conclusions

• Many set crews to optimise resource flows
 – Recycling economy approach (cradle-to-cradle)
 – Shift from non-renewables to renewables
 – Behaviour (sufficiency)

• Be aware of trade offs and sub-optimisation
 – Horizontally (energy, material resources, carbon emissions, …)
 – Vertically (Construction material, Product/component, Building, …)

• Holistic approaches and system thinking are needed

• Design for Sustainability

• Design for Disassembly